Enhancing directed binary trees for multi-class classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing directed binary trees for multi-class classification

One approach to multi-class classification consists in decomposing the original problem into a collection of binary classification tasks. The outputs of these binary classifiers are combined to produce a single prediction. Winner-takesall, max-wins and tree voting schemes are the most popular methods for this purpose. However, tree schemes can deliver faster predictions because they need to eva...

متن کامل

Binary Classification Trees for Multi-class Classification Problems

This paper proposes a binary classification tree aiming at solving multi-class classification problems using binary classifiers. The tree design is achieved in a way that a class group is partitioned into two distinct subgroups at a node. The node adopts the class-modular scheme to improve the binary classification capability. The partitioning is formulated as an optimization problem and a gene...

متن کامل

Multi-class Binary Symbol Classification with Circular Blurred Shape Models

Multi-class binary symbol classification requires the use of rich descriptors and robust classifiers. Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we present the Circular Blurred Shape Model descriptor. This descriptor encodes the arrangement information of object parts in a correlogram st...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Learning Binary Classifiers for Multi-Class Problem

One important idea for the multi-class classification problem is to combine binary classifiers (base classifiers), which is summarized as error correcting output codes (ECOC), and the generalized Bradley-Terry (GBT) model gives a method to estimate the multi-class probability. In this memo, we review the multi-class problem with the GBT model and discuss two issues. First, a new estimation algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2013

ISSN: 0020-0255

DOI: 10.1016/j.ins.2012.10.011